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Objectives 
•	 To develop new membranes and membrane electrode assemblies (MEAs) for operation at temperatures 

substantially in excess of 120°C 

Approach 
• Simultaneously carry out R&D on: 

- Physical chemistry of polymer electrolytes 
- New polymeric electrolytes 
- New approaches to proton transport in polymer electrolytes 
- Development of MEAs based on new polymer electrolytes 

Accomplishments 

Physical Chemistry 
•	 Computational studies revealed key intermediate states in proton transfer processes;  showed that 

water plays a role in ‘bridging’ and organizing acid groups to facilitate proton transfer 

New Membranes 
• Synthesized new polymers with higher acidity 
• Developed several strategies targeting ‘water replacements’ 

Catalyst-Coated Membranes (CCMs)/Electrodes 
•	 Successfully fabricated MEAs for one class of new membrane materials; achieved performance 

comparable to that of Nafion-based MEAs 

Industrial and Other Collaborative Interactions 
•	 Worked directly with several university partners in developing and testing high-temperature 

membranes 
• Assisted DOE industry partners in CCM development for high-temperature membranes 
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• Developed draft Roadmap for High Temperature Polymer Membranes 
•	 High-Temperature Polymer Membrane Working Group (HTPMWG) was expanded and strengthened 

through several meetings 

Future Directions 
• Perform more extensive computational studies on novel systems 
•	 Continue to develop methods for screening new membrane concepts at a higher rate; test new 

electrolytes in fuel cells on a 4 month cycle starting in the fall of 2002 
•	 Expand initial tests on enhancing electrode performance; develop capability for probing oxidation 

reduction reaction (ORR) at temperature ex situ; develop understanding of interactions at buried 
interfaces within electrodes 
- Develop reliable CCM fabrication approaches 
-	 Continue to develop means for scale-up of polymers, film-making and CCM production to modest 

scale 
• Industry and Other Collaborations 

-	 Continue to make industrial and academic contacts from Case Western Reserve University (CWRU) 
to enable technology transfer and dissemination of ideas 

-	 Organize the HTMWG (streamline funding mechanism, improve meeting scheduling); evolve 
toward a discussion group format, idea exchange 
Introduction 

The need to operate at temperatures exceeding 
100°C presents difficult new challenges for the 
polymer electrolytes used in fuel cells. This difficulty 
stems from the decrease in water content of the 
polymer electrolytes in the desired temperature 
range. There is a need for detailed understanding of 
the impact of poor or zero hydration on membrane 
and electrode processes in the fuel cell.  Water plays 
a key facilitating role in proton transport; thus, lower 
water content leads to lower conductivity. Lack of 
water also has important negative consequences for 
electrode behavior. 

Approach 

At this point, we do not know which of several 
approaches is most promising. Thus, our membrane 
development efforts involve (1) a full-fledged effort 
to explore approaches involving polymer synthesis 
and development, as well as implementation of new 
“carrier” media to replace the function of water in 
Nafion, and (2) a study of proton transfer dynamics. 
We are using theoretical approaches to explore 
specific possibilities for new acid group types or for 

acid-base interactions that could lead to progress in 
proton transfer media. We are also working to 
establish better understanding of the energetics of 
proton transfer to inform synthetic efforts.  We also 
are working to incorporate new polymers in fuel cells 
by developing catalyst-coated membranes from the 
new materials. Finally, we have assisted DOE in 
setting up a range of polymer electrolyte 
development efforts, involving several universities 
and with significant industrial input. 

Results 

Physical Chemistry 

As a starting point for our efforts, proton 
solvation and transfer in water-containing polymer 
electrolytes will provide some clues on critical steps 
in the approach. We are studying the energetics and 
dynamics of these processes. The tools we develop 
allow us to compare strengths of various target acids 
and assess the efficacy of water ‘replacements.’ We 
continue to expand the range of acid types studied as 
hydrates using density functional computational 
methods. These studies give us insight into the 
relative importance of solvation and dissociation 
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processes for various highly delocalized anions. The 
most interesting work this year used a sophisticated 
ab initio/molecular dynamics method to identify 
some surprising aspects of the proton transport 
dynamics. Specifically, we found that sidechain-to
sidechain hopping of protons could occur, albeit with 
the ‘cooperation’ of certain water configurations 
bridging between sidechain groups. This finding is 
highly suggestive regarding possible water 
replacements and their structural requirements for 
facilitating proton transport. 

Additional work is underway to use 
computational methods to (i) tailor bases to mimic 
water, perhaps using substituted imidazoles or other 
proton carriers; (ii) understand proton transport in 
phosphoric acid/basic polymer systems; and (iii) 
augment other experiments on new polymers and 
additives of various types. 

New Membranes 

Three classes of membrane materials are 
presently in preparation and testing.  These are (i) 
polymers and inorganic materials with controlled 
pore size to be modified with acid groups lining 
pores,  (ii) polymeric systems with intrinsically 
stronger acid groups, and (iii) polymer systems 
swollen or imbibed with tailored proton acceptors. 
These are useful both intrinsically and as test or 
model systems.  At least two more types of materials 
are ‘on the drawing board.’  Details of our ideas and 
approaches will be provided as the materials are 
tested later this year. 

CCMs 

We are forming CCMs from new polymers, often 
with radically different properties than those to 
which we are accustomed. Observed difficulties in 
achieving good performance with new CCMs stem 
from processes occurring at several different length 
scales: 

•	 Macro scale (CCM level): adhesion 
phenomena, polymer segregation in catalyst 
layer, mechanical properties of electrode and 
membrane 

•	 Meso scale (agglomerate level): mass 
transport of gases, continuous proton and 
electron conducting pathways 

•	 Nano scale (local level): proton accessibility 
to site, electrocatalysis, polymer adsorption, 
polymer mobility 

We have successfully catalyzed the Virginia Tech 
membranes and obtained performance comparable to 
that obtained with Nafion membranes of comparable 
thickness. Results are shown in Figures 1 and 2. The 
importance of these results lies in our ability to 
overcome difficulties inherent in catalyzing many of 
the emerging new membranes. Achieving good 
performance required some treatment of the CCM 
under operating conditions in the cell. The cells thus 
prepared appear to be robust in lifetests over 
hundreds of hours. 

A more fundamental problem that arises in the 
high temperature regime is the necessity of good 
proton accessibility to electrodes. Many new 
polymer types proposed involve a sulfonated 
aromatic polymer. Microelectrode studies of the 
ORR on such materials indicate a significant loss of 
activity with decreasing water content in the 
polymer, far exceeding that observed with Nafion. 
This is likely due to the lower acidity of the aromatic 
sulfonates compared with that of the perfluorinated 
material. Our best results to date have been obtained 
using Nafion as the ionomer in the cathode catalyst 
layer. 

We are actively studying the impact of the range 
of environments local and corresponding different 

Figure 1. Polarization curves showing comparison of 
performance at 80oC of CCMs prepared from 
Nafion 112 and biphenyl sulfone (BPSH-30, 
2.6 mil thick) membranes.  Catalyst loading: 
0.2 mg/cm2 Pt anode, 0.4 mg/cm2 cathode. 
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provide useful insights into the conduction process to 
guide synthetic efforts. The first polymers geared for 
temperatures in excess of 100°C are emerging, and 
testing is showing that, although promising, there are 
definite shortcomings. Work on making viable new 
materials continues. 

Figure 2. Polarization curves showing comparison of 
performance at 120oC of CCMs prepared 
from Nafion 112 and BPSH-30 (2.6 mil thick) 
membranes.  Catalyst loading: 0.2 mg/cm2 Pt 
anode, 0.4 mg/cm2 cathode. 

degrees of proton access to surface.  Given the 
constrained dynamics of the polymer system, acid 
access to the catalyst surface is a key issue. Various 
additives, such as low molecular weight acids, have 
been and are being used to augment catalyst layer 
acidity and the mobility of acidic groups. Results to 
date have been inconclusive. 

Industrial and Other Collaborative Interactions 

We are engaged in a series of collaborative 
efforts with industry, national laboratories, and 
universities to facilitate efforts to achieve the targets 
for high-temperature polymer membranes. We have 
organized the High-Temperature Polymer Membrane 
Working Group, which has met four times to date. 
Bi-annual meetings allow us to assess progress and to 
communicate issues and needs to the high-
temperature membrane community at large. 

Conclusions 

The development of new polymer electrolytes 
for operation at elevated temperature is under way. 
However, this is a long-term project. Replacement of 
water is the most difficult problem, but adequate 
stability and cathode activity are not trivial objectives 
to achieve. We have developed several different 
approaches to address this problem. Fundamental 
work, including computational and experimental 
studies of new acid-functionalized materials, can 
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